
// Smart Contract Security Assessment 01.20.2025 - 01.24.2025

Guru Fund

Guru

G u r u F u n d - G u r u

Prepared by: HALBORN

Last Updated 02/17/2025

Date of Engagement by: January 20th, 2025 - January 24th, 2025

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS

2 1

CRITICAL

0

HIGH

1

MEDIUM

0

LOW

9

INFORMATIONAL

1 1

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 The functionality to claim abandoned funds for buyback and burn could be dosed
7.2 Minimum deposit value not enforced
7.3 Incorrect order of modifiers: nonreentrant should be the first
7.4 Non-upgradeable reentrancyguard used
7.5 Extendgraceperiod() can shorten grace period
7.6 Missing _disableinitializers() call in the constructor
7.7 Mix usage of block.number and block.timestamp
7.8 Signed payloads to create new funds can be replayed
7.9 Missing input validation
7.10 Centralization risks
7.11 Single-step ownership transfer process
7.12 Owner can renounce ownership
7.13 Use of an unlicensed smart contract
7.14 Incomplete natspec documentation

1 0 0%

7.15 Unlocked pragma compiler
7.16 Magic numbers in use
7.17 Unused custom errors and imports
7.18 Style guide optimizations
7.19 Consider using named mappings
7.20 Cache array length outside of loop
7.21 Potentially unsafe or unnecessary castings

8. Automated Testing

1 . I n t r o d u c t i o n

Guru engaged Halborn to conduct a security assessment on their Guru Fund project beginning on
January 20th, 2025 and ending on January 24th, 2025. The security assessment was scoped to the
GuruFund code provided to the Halborn team. Commit hashes and further details can be found in the
Scope section of this report.

2. A s s e s s m e n t S u m m a r y

Halborn was provided five days for the engagement and assigned one full-time security engineer to
review the security of the smart contract in scope. The engineer is a blockchain and smart contract
security expert with advanced penetration testing and smart contract hacking skills, and deep
knowledge of multiple blockchain protocols.

The purpose of the assessment is to:

Identify potential security issues within the smart contracts.
Ensure that smart contract functionality operates as intended.

In summary, Halborn identified some improvements to reduce the likelihood and impact of risks, which
were mostly addressed by the Guru team. The main ones were the following:

In claimAbandonedFundsForBuybackAndBurn(), use WETH balance instead of ETH balance
when unwrapping WETH.

Make sure to enforce the minimum deposit value.
Ensure the nonReentrant modifier is always the first modifier in all functions.

3. Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of manual and automated security testing to balance efficiency,
timeliness, practicality, and accuracy in regard to the scope of this assessment. While manual testing is
recommended to uncover flaws in logic, process, and implementation; automated testing techniques help
enhance coverage of the contracts' solidity code and can quickly identify items that do not follow
security best practices. The following phases and associated tools were used throughout the term of the
assessment:

Research into architecture and purpose.
Smart contract manual code review and walk-through.
Manual assessment of use and safety for the critical Solidity variables and functions in scope to

identify any arithmetic-related vulnerability classes.
Local testing with custom scripts (Hardhat and Foundry).
Fork testing against main networks (Hardhat and Foundry).
Static analysis of security for scoped contract, and imported functions.

4. R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity
Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means
by which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk
to address the most critical issues in a timely manner.

4.1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and regulatory
challenges.

M E T R I C S :

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

M ​E

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4.2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract due to
a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

M ​E

E

E = m ​∏ e

M ​I

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4.3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

M ​I

I

I = max(m ​) +I ​

4
m ​ − max(m ​)∑ I I

C

r

s

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

C

C = rs

S

S = min(10,EIC ∗ 10)

5. S C O P E

F ILES AND REPOSITORY

(a) Repository: halborn-audit

(b) Assessed Commit ID: 4367c4d

(c) Items in scope:

src/helpers/EIP712Helper.sol
src/helpers/SwapHelper.sol
src/helpers/TransferHelper.sol
src/interfaces/IWETH.sol
src/lib/Error.sol
src/lib/FundAction.sol
src/FundFactory.sol
src/GuruFund.sol

Out-of-Scope: Third party dependencies and economic attacks.

REMEDIAT ION COMMIT ID :

768cf9c
84d7e5f

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL

0

HIGH

1

MEDIUM

0

LOW

9

INFORMATIONAL

1 1

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

THE FUNCTIONALITY TO CLAIM ABANDONED FUNDS
FOR BUYBACK AND BURN COULD BE DOSED

HIGH SOLVED - 02/10/2025

https://gitlab.com/guru-fund/halborn-audit
https://gitlab.com/guru-fund/halborn-audit/-/commit/768cf9cd6d12462058d1fe70ea12357fe8dec65a
https://gitlab.com/guru-fund/halborn-audit/-/commit/84d7e5f599af8bde9bd6902a0ca23a0a24e43cb8

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

MINIMUM DEPOSIT VALUE NOT ENFORCED LOW
RISK ACCEPTED -

02/12/2025

INCORRECT ORDER OF MODIFIERS: NONREENTRANT
SHOULD BE THE FIRST

LOW SOLVED - 02/10/2025

NON-UPGRADEABLE REENTRANCYGUARD USED LOW
PARTIALLY SOLVED -

02/10/2025

EXTENDGRACEPERIOD() CAN SHORTEN GRACE PERIOD LOW
PARTIALLY SOLVED -

02/10/2025

MISSING _DISABLEINITIALIZERS() CALL IN THE
CONSTRUCTOR

LOW SOLVED - 02/10/2025

MIX USAGE OF BLOCK.NUMBER AND BLOCK.TIMESTAMP LOW SOLVED - 02/10/2025

SIGNED PAYLOADS TO CREATE NEW FUNDS CAN BE
REPLAYED

LOW SOLVED - 02/11/2025

MISSING INPUT VALIDATION LOW
RISK ACCEPTED -

02/13/2025

CENTRALIZATION RISKS LOW
RISK ACCEPTED -

02/13/2025

SINGLE-STEP OWNERSHIP TRANSFER PROCESS INFORMATIONAL
ACKNOWLEDGED -

02/12/2025

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

OWNER CAN RENOUNCE OWNERSHIP INFORMATIONAL
PARTIALLY SOLVED -

02/10/2025

USE OF AN UNLICENSED SMART CONTRACT INFORMATIONAL SOLVED - 02/10/2025

INCOMPLETE NATSPEC DOCUMENTATION INFORMATIONAL
ACKNOWLEDGED -

02/13/2025

UNLOCKED PRAGMA COMPILER INFORMATIONAL SOLVED - 02/10/2025

MAGIC NUMBERS IN USE INFORMATIONAL
ACKNOWLEDGED -

02/13/2025

UNUSED CUSTOM ERRORS AND IMPORTS INFORMATIONAL
PARTIALLY SOLVED -

02/11/2025

STYLE GUIDE OPTIMIZATIONS INFORMATIONAL
PARTIALLY SOLVED -

02/11/2025

CONSIDER USING NAMED MAPPINGS INFORMATIONAL
ACKNOWLEDGED -

02/13/2025

CACHE ARRAY LENGTH OUTSIDE OF LOOP INFORMATIONAL
ACKNOWLEDGED -

02/13/2025

POTENTIALLY UNSAFE OR UNNECESSARY CASTINGS INFORMATIONAL
ACKNOWLEDGED -

02/13/2025

7. F I N D I N G S & T EC H D E TA I L S

7.1 T H E F U N C T I O N A L I T Y TO C L A I M A BA N D O N E D F U N D S FO R

B U Y BAC K A N D B U R N C O U L D B E D O S E D

// HIGH

Description
In GuruFund.sol, the claimAbandonedFundsForBuybackAndBurn() function attempts to unwrap ETH
using the contract's ETH balance instead of its WETH balance:

/**/**
 * @notice After the grace period ends, the protocol owner can claim any * @notice After the grace period ends, the protocol owner can claim any
 * remaining funds to buyback and burn $GURU. * remaining funds to buyback and burn $GURU.
 */ */
functionfunction claimAbandonedFundsForBuybackAndBurnclaimAbandonedFundsForBuybackAndBurn(()) externalexternal {{
 requirerequire((
 !!isOpen isOpen &&&&
 msg msg..sender sender ==== fundFactory fundFactory..ownerowner(()) &&&&
 block block..timestamp timestamp >> gracePeriodEnd gracePeriodEnd,,
 Error Error..UnauthorizedUnauthorized(())
));;
 _unwrapETH_unwrapETH((addressaddress((thisthis))..balancebalance));;
 _safeTransferETH_safeTransferETH((fundFactoryfundFactory..guruBurnerguruBurner(()),, addressaddress((thisthis))..balancebalance));;
 emitemit AbandonedFundsClaimedAbandonedFundsClaimed(());;
}}

The issue is that _unwrapETH() is called with address(this).balance (raw ETH) instead of
WETH.balanceOf(address(this)) (wrapped ETH). This is incorrect because:

It is not possible to unwrap ETH that is not wrapped.
The actual WETH balance might be different from the ETH balance.
In the worst scenario, the function would revert if WETH balance < ETH balance.

Proof of Concept
An attacker could send some native funds to the GuruFund contract to prevent the protocol owner from
successfully calling claimAbandonedFundsForBuybackAndBurn().

In order to prove this, the "Should let the protocol owner claim the remaining funds (only after a 180 day
grace period)" test was updated as follows:

itit(('DoS the protocol when trying to Claim Abandoned Funds For Buyback And Bu'DoS the protocol when trying to Claim Abandoned Funds For Buyback And Bu
 // Make sure the GuruFund is closed// Make sure the GuruFund is closed
 assertassert((awaitawait $ $OSHOOSHO..isOpenisOpen(()),, falsefalse))

 // Check how much ETH the GuruFund contract has// Check how much ETH the GuruFund contract has
 constconst balanceETHBefore balanceETHBefore == awaitawait ethers ethers..providerprovider..getBalancegetBalance(($$OSHOOSHO..targettarget))
 console console..loglog(("balanceETHBefore: ""balanceETHBefore: ",, balanceETHBefore balanceETHBefore))

 // Check how much WETH the GuruFund contract has// Check how much WETH the GuruFund contract has
 constconst wethBalance wethBalance == awaitawait $ $WETHWETH..balanceOfbalanceOf(($$OSHOOSHO..targettarget))
 console console..loglog(("wethBalance: ""wethBalance: ",, wethBalance wethBalance))

 // Attacker sends some ETH so the GuruFund contract has just a bit more // Attacker sends some ETH so the GuruFund contract has just a bit more
 awaitawait anon1 anon1..sendTransactionsendTransaction(({{
 to to:: $ $OSHOOSHO..targettarget,,
 value value:: wethBalance wethBalance ++ BigIntBigInt((11)),,
 }}))

 // Check how much WETH the GuruFund contract has now// Check how much WETH the GuruFund contract has now
 constconst balanceETHAfter balanceETHAfter == awaitawait ethers ethers..providerprovider..getBalancegetBalance(($$OSHOOSHO..targettarget))
 console console..loglog(("balanceETHAfter: ""balanceETHAfter: ",, balanceETHAfter balanceETHAfter))

 constconst GRACE_PERIOD_IN_SECONDSGRACE_PERIOD_IN_SECONDS == 180180 ** 8640086400
 awaitawait ethers ethers..providerprovider..sendsend(('evm_increaseTime''evm_increaseTime',, [[
 GRACE_PERIOD_IN_SECONDSGRACE_PERIOD_IN_SECONDS,,
]]))
 awaitawait ethers ethers..providerprovider..sendsend(('evm_mine''evm_mine'))

 // factoryOwner tries to Claim Abandoned Funds For Buyback And Burn with// factoryOwner tries to Claim Abandoned Funds For Buyback And Burn with
 awaitawait expectexpect((
 $ $OSHOOSHO
 ..connectconnect((factoryOwnerfactoryOwner))
 ..claimAbandonedFundsForBuybackAndBurnclaimAbandonedFundsForBuybackAndBurn(())
))..toto..emitemit(($$OSHOOSHO,, 'AbandonedFundsClaimed''AbandonedFundsClaimed'))
}}))

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:H/I:M/D:H/Y:N (7.1)

Recommendation
In claimAbandonedFundsForBuybackAndBurn(), use WETH balance instead of ETH balance:

/**/**
 * @notice After the grace period ends, the protocol owner can claim any * @notice After the grace period ends, the protocol owner can claim any
 * remaining funds to buyback and burn $GURU. * remaining funds to buyback and burn $GURU.
 */ */
functionfunction claimAbandonedFundsForBuybackAndBurnclaimAbandonedFundsForBuybackAndBurn(()) externalexternal {{

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:H/I:M/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:H/I:M/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:H/I:M/D:H/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:H/I:M/D:H/Y:N

 requirerequire((
 !!isOpen isOpen &&&&
 msg msg..sender sender ==== fundFactory fundFactory..ownerowner(()) &&&&
 block block..timestamp timestamp >> gracePeriodEnd gracePeriodEnd,,
 Error Error..UnauthorizedUnauthorized(())
));;

-- _unwrapETH_unwrapETH((addressaddress((thisthis))..balancebalance));;
++ uint256uint256 wethBalance wethBalance == fundFactory fundFactory..wethweth(())..balanceOfbalanceOf((addressaddress((thisthis))));;
++ ifif ((wethBalance wethBalance >> 00)) _unwrapETH_unwrapETH((wethBalancewethBalance));;

 _safeTransferETH_safeTransferETH((fundFactoryfundFactory..guruBurnerguruBurner(()),, addressaddress((thisthis))..balancebalance));;
 emitemit AbandonedFundsClaimedAbandonedFundsClaimed(());;
}}

Remediation

SOLVED: The Guru team fixed this finding in commit 768cf9cd by unwrapping the WETH balance as
recommended.

Remediation Hash
https://gitlab.com/guru-fund/halborn-audit/-/commit/768cf9cd6d12462058d1fe70ea12357fe8dec65a

https://gitlab.com/guru-fund/halborn-audit/-/commit/768cf9cd6d12462058d1fe70ea12357fe8dec65a

7. 2 M I N I M U M D E P O S I T VA L U E N OT E N FO RC E D

// LOW

Description
The GuruFund contract declares a minUserDepositValue global state variable and sets it during fund
initialization, but there is no on-chain enforcement to ensure that a user’s deposit meets or exceeds this
value when calling deposit functions. Although the protocol intends to collect a deposit fee as a
percentage of the deposited amount, not having a minimum deposit check allows users to deposit
extremely small amounts repeatedly. This can effectively minimize or circumvent meaningful fees,
contrary to the intended fee structure. Consequently, the protocol may lose revenue and fail to
discourage micro-deposits or spam.

BVSS

AO:A/AC:M/AX:L/R:N/S:U/C:N/A:N/I:L/D:M/Y:L (4.2)

Recommendation
Introduce a check in the deposit-related functions that reverts if the deposit’s value falls below
minUserDepositValue. This ensures the protocol’s minimum deposit threshold is upheld, preventing
trivial deposits from circumventing the intended fee model.

Remediation

RISK ACCEPTED: The Guru team accepted the risk of this finding.

https://www.halborn.com/portal/bvss?q=AO:A/AC:M/AX:L/R:N/S:U/C:N/A:N/I:L/D:M/Y:L
https://www.halborn.com/portal/bvss?q=AO:A/AC:M/AX:L/R:N/S:U/C:N/A:N/I:L/D:M/Y:L
https://www.halborn.com/portal/bvss?q=AO:A/AC:M/AX:L/R:N/S:U/C:N/A:N/I:L/D:M/Y:L
https://www.halborn.com/portal/bvss?q=AO:A/AC:M/AX:L/R:N/S:U/C:N/A:N/I:L/D:M/Y:L

7. 3 I N C O R R EC T O R D E R O F M O D I F I E RS : N O N R E E N T R A N T

S H O U L D B E T H E F I RST

// LOW

Description
The nonReentrant modifier is a critical security measure used in Solidity to prevent reentrancy attacks.
It acts as a function-level lock, ensuring that a function cannot be called again before it finishes its
execution. To maximize its effectiveness, the nonReentrant modifier must be placed as the first modifier
in a function declaration. This ordering ensures that reentrancy protection is applied before any other
logic or checks in other modifiers are executed.

Currently, some functions in the contract place other modifiers, such as onlyOpen, onlyNotPaused and
verifyingSignature, before the nonReentrant modifier. This improper ordering can lead to scenarios
where external calls in preceding modifiers might be exploited to bypass the reentrancy protection
provided by nonReentrant.

For example, the deposit() function places nonReentrant after onlyOpen and onlyNotPaused, exposing
it to a potential reentrancy risk:

functionfunction depositdeposit((
 SignedPayload SignedPayload calldatacalldata _signedDepositPayload _signedDepositPayload
))
 externalexternal
 payablepayable
 onlyOpen onlyOpen
 onlyNotPaused onlyNotPaused
 nonReentrant nonReentrant
 verifyingSignatureverifyingSignature((_signedDepositPayload_signedDepositPayload))
{{

The swapTokensForETH() and swapETHForTokens(), close() and depositAsset() functions also follow
this pattern. These functions interact with external addresses through the onlyNotPaused and
verifyingSignature modifiers, further increasing the risk of reentrancy attacks.

BVSS

AO:A/AC:L/AX:M/R:P/S:C/C:N/A:M/I:M/D:M/Y:M (3.7)

Recommendation
Reorder the nonReentrant modifier to precede all other modifiers in the affected functions. This ensures
that reentrancy protection is enforced before any additional checks or logic are applied.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:P/S:C/C:N/A:M/I:M/D:M/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:P/S:C/C:N/A:M/I:M/D:M/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:P/S:C/C:N/A:M/I:M/D:M/Y:M
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:P/S:C/C:N/A:M/I:M/D:M/Y:M

Remediation

SOLVED: The Guru team fixed this finding in commit 768cf9cd by making the nonReentrant modifier
precede all other modifiers, as recommended.

Remediation Hash
https://gitlab.com/guru-fund/halborn-audit/-/commit/768cf9cd6d12462058d1fe70ea12357fe8dec65a

https://gitlab.com/guru-fund/halborn-audit/-/commit/768cf9cd6d12462058d1fe70ea12357fe8dec65a

7. 4 N O N - U P G R A D E A B L E R E E N T R A N CYG UA R D U S E D

// LOW

Description
The GuruFund contract, which is meant to be deployed via cloning (EIP-1167 minimal proxy), inherits from
OpenZeppelin's non-upgradeable ReentrancyGuard instead of ReentrancyGuardUpgradeable. In cloned
contracts, constructors are not executed, which means the _status variable in ReentrancyGuard remains
uninitialized.

See the contract declaration:

contractcontract GuruFundGuruFund isis
 ReentrancyGuard ReentrancyGuard,,
 OwnableUpgradeable OwnableUpgradeable,,
 SwapHelper SwapHelper,,
 ERC20Upgradeable ERC20Upgradeable,,
 TransferHelper TransferHelper
{{

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:L/D:N/Y:N (3.1)

Recommendation
Replace the import and inheritance with the upgradeable version of the ReentrancyGuard module:

-- importimport '@openzeppelin/contracts/security/ReentrancyGuard.sol''@openzeppelin/contracts/security/ReentrancyGuard.sol';;
++ importimport "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeab"@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeab

contractcontract GuruFundGuruFund isis
-- ReentrancyGuard ReentrancyGuard,,
++ ReentrancyGuardUpgradeable ReentrancyGuardUpgradeable,,
 OwnableUpgradeable OwnableUpgradeable,,

{{
 functionfunction initializeinitialize((......)) externalexternal payablepayable initializer initializer {{

++ __ReentrancyGuard_init__ReentrancyGuard_init(());;

 }}
}}

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:L/D:N/Y:N

Remediation

PARTIALLY SOLVED: The Guru team partially fixed this finding in commit 768cf9cd by using
ReentrancyGuardUpgradeable instead of ReentrancyGuard as recommended. However, the old import
of ReentrancyGuard was not removed, and the initializer function (__ReentrancyGuard_init()) is not
called inside the initialize() function.

Remediation Hash
https://gitlab.com/guru-fund/halborn-audit/-/commit/768cf9cd6d12462058d1fe70ea12357fe8dec65a

https://gitlab.com/guru-fund/halborn-audit/-/commit/768cf9cd6d12462058d1fe70ea12357fe8dec65a

7. 5 E X T E N D G R AC E P E R I O D () CA N S H O RT E N G R AC E P E R I O D

// LOW

Description
In GuruFund, the extendGracePeriod() function allows the protocol owner to modify the grace period
end time. Despite its name suggesting only extension is possible, the function actually allows setting any
arbitrary timestamp, including past ones:

/**/**
 * @notice Extends the grace period. * @notice Extends the grace period.
 * @param _newGracePeriodEnd The new grace period end * @param _newGracePeriodEnd The new grace period end
 */ */
functionfunction extendGracePeriodextendGracePeriod((uint256uint256 _newGracePeriodEnd _newGracePeriodEnd)) externalexternal {{
 // Only protocol owner can extend the grace period// Only protocol owner can extend the grace period
 requirerequire((msgmsg..sender sender ==== fundFactory fundFactory..ownerowner(()),, Error Error..UnauthorizedUnauthorized(())));;
 gracePeriodEnd gracePeriodEnd == _newGracePeriodEnd _newGracePeriodEnd;;
 emitemit GracePeriodExtendedGracePeriodExtended((_newGracePeriodEnd_newGracePeriodEnd));;
}}

The affected function:

Can set the new gracePeriodEnd to a timestamp lower than the current gracePeriodEnd.
Can even set it to a past timestamp.
Has a misleading name suggesting only extension is possible.

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:H/I:H/D:H/Y:H (2.6)

Recommendation
Add validation to ensure the new grace period can only be extended and cannot be from the past.

Remediation

PARTIALLY SOLVED: The Guru team partially fixed this finding in commit 768cf9cd by validating that the
new grace period is greater than the current time. However, it is still possible to reduce the
gracePeriodEnd global state variable by calling the extendGracePeriod() function. Consider ensuring
that the new grace period is greater or modifying the function's name.

Remediation Hash
https://gitlab.com/guru-fund/halborn-audit/-/commit/768cf9cd6d12462058d1fe70ea12357fe8dec65a

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:H/I:H/D:H/Y:H
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:H/I:H/D:H/Y:H
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:H/I:H/D:H/Y:H
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:H/I:H/D:H/Y:H
https://gitlab.com/guru-fund/halborn-audit/-/commit/768cf9cd6d12462058d1fe70ea12357fe8dec65a

7. 6 M I S S I N G _D I SA B L E I N I T I A L I Z E RS () CA L L I N T H E

C O N ST RU C TO R

// LOW

Description
The GuruFund contract follows an upgradeable pattern, indirectly inheriting from the Initializable
module from OpenZeppelin. In order to prevent leaving the contracts uninitialized, OpenZeppelin's
documentation recommends adding the _disableInitializers() function in the constructor to
automatically lock the contracts when they are deployed. However, all upgradeable contracts in scope
are missing this function call.

This omission can lead to potential security vulnerabilities, as an uninitialized implementation contract
can be taken over by an attacker, which may impact the proxy.

BVSS

AO:A/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:P/S:U (2.5)

Recommendation
Consider adding a constructor and calling the _disableinitializers() method within the contracts to
prevent the implementation from being initialized.

/**/**
 * @dev This will only be called once when deploying the Fund Factory. * @dev This will only be called once when deploying the Fund Factory.
 * Clones initializers will be called by the FundFactory. * Clones initializers will be called by the FundFactory.
 */ */
constructorconstructor(()) {{
 fundFactory fundFactory == FundFactoryFundFactory((msgmsg..sendersender));;
 _disableInitializers_disableInitializers(());;
}}

Remediation

SOLVED: The Guru team fixed this finding in commit 768cf9cd by calling the _disableInitializers() in
the constructor as recommended.

Remediation Hash
https://gitlab.com/guru-fund/halborn-audit/-/commit/768cf9cd6d12462058d1fe70ea12357fe8dec65a

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:M/A:N/D:N/Y:N/R:P/S:U
https://gitlab.com/guru-fund/halborn-audit/-/commit/768cf9cd6d12462058d1fe70ea12357fe8dec65a

7.7 M I X U SAG E O F B LO C K . N U M B E R A N D B LO C K .T I M ESTA M P

// LOW

Description
The contracts in scope predominantly uses block.timestamp for time-based checks but utilizes
block.number in the _verifyEIP712() function to validate the SignedPayload.expiresAt field.
However, the SignedPayload struct includes a comment stating that expiresAt is an "expiration
timestamp," suggesting it should align with block.timestamp:

structstruct SignedPayloadSignedPayload {{

 /**/**
 * @notice Expiration timestamp of the payload * @notice Expiration timestamp of the payload
 */ */
 uint256uint256 expiresAt expiresAt;;
}}

The current check in _verifyEIP712() enforces require(_payload.expiresAt >= block.number,
ExpiredSignature());, which relies on block numbers rather than timestamps. This discrepancy can
cause confusion for integrators and may lead to unintended expiration behavior.

functionfunction _verifyEIP712_verifyEIP712((
 bytes32bytes32 _typeHash _typeHash,,
 addressaddress _account _account,,
 SignedPayload SignedPayload calldatacalldata _payload _payload
)) internalinternal viewview {{
 requirerequire((_payload_payload..expiresAt expiresAt >=>= block block..numbernumber,, ExpiredSignatureExpiredSignature(())));;

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:N/D:N/Y:N (2.5)

Recommendation
Maintain a consistent source of time-based validations throughout the contract. If the intent is to rely on
actual time, switch to block.timestamp for signature expiration checks. Alternatively, if block-based
expiration is intentional, update the variable name (e.g., expiresBlock) and ensure corresponding
documentation reflects the block-based logic. This prevents confusion and preserves clear, uniform
semantics for time-dependent operations.

Remediation

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:N/D:N/Y:N

SOLVED: The Guru team fixed this finding in commit 768cf9cd by updating the expiresAt documentation
indicating that block number is used.

Remediation Hash
https://gitlab.com/guru-fund/halborn-audit/-/commit/768cf9cd6d12462058d1fe70ea12357fe8dec65a

https://gitlab.com/guru-fund/halborn-audit/-/commit/768cf9cd6d12462058d1fe70ea12357fe8dec65a

7. 8 S I G N E D PAY LOA D S TO C R E AT E N E W F U N D S CA N B E

R E P L AY E D

// LOW

Description
When creating a new fund via the createFund() function, the contract verifies an off-chain signature
using _verifyEIP712():

/**/**
 * @notice Creates a new fund with a minimum deposit of 1000 USDT worth of * @notice Creates a new fund with a minimum deposit of 1000 USDT worth of
 * @param _name Name of the fund token * @param _name Name of the fund token
 * @param _symbol Symbol of the fund token * @param _symbol Symbol of the fund token
 * @param _signedPayload Signed payload containing expiration, signature, a * @param _signedPayload Signed payload containing expiration, signature, a
 * the encoded price feed with latest WETH/USDT price * the encoded price feed with latest WETH/USDT price
 */ */
functionfunction createFundcreateFund((
 stringstring calldatacalldata _name _name,,
 stringstring calldatacalldata _symbol _symbol,,
 SignedPayload SignedPayload calldatacalldata _signedPayload _signedPayload
)) publicpublic payablepayable whenNotPaused whenNotPaused {{
 verifySignatureverifySignature((msgmsg..sendersender,, _signedPayload _signedPayload));;

functionfunction verifySignatureverifySignature((
 addressaddress account account,,
 SignedPayload SignedPayload calldatacalldata _signedPayload _signedPayload
)) publicpublic viewview {{
 _verifyEIP712_verifyEIP712((SIGNED_ACTION_TYPEHASHSIGNED_ACTION_TYPEHASH,, account account,, _signedPayload _signedPayload));;
}}

However, the validation does not include any nonce or mechanism to mark signatures as “used.” As a
result, as long as the signature remains valid (i.e., before expiresAt), the same signature payload can
potentially be replayed by the same user to create multiple funds.

/**/**
 * @dev Verifies the signature * @dev Verifies the signature
 * @param _typeHash Type hash * @param _typeHash Type hash
 * @param _account Address of the user the signature was signed for * @param _account Address of the user the signature was signed for
 * @param _payload Signed payload containing the data, signature and expira * @param _payload Signed payload containing the data, signature and expira
 */ */
functionfunction _verifyEIP712_verifyEIP712((

 bytes32bytes32 _typeHash _typeHash,,
 addressaddress _account _account,,
 SignedPayload SignedPayload calldatacalldata _payload _payload
)) internalinternal viewview {{
 requirerequire((_payload_payload..expiresAt expiresAt >=>= block block..numbernumber,, ExpiredSignatureExpiredSignature(())));; //@audit //@audit
 requirerequire((
 SignatureChecker SignatureChecker..isValidSignatureNowisValidSignatureNow((
 signer signer,,
 _hashTypedDataV4_hashTypedDataV4((
 keccak256keccak256((
 abi abi..encodeencode((
 _typeHash _typeHash,,
 _account _account,,
 keccak256keccak256((_payload_payload..datadata)),,
 _payload _payload..expiresAtexpiresAt
))
))
)),,
 _payload _payload..signaturesignature
)),,
 InvalidSignatureInvalidSignature(())
));;
}}

The development team clarified they intend for every new fund creation to have a unique signature, but
the contract does not technically enforce this. Due to the short signature validity window (10 blocks,
which is approximately 2 minutes under certain network conditions), the risk of this finding was reduced
to low. Nevertheless, without a nonce or one-time-use scheme, replay attacks remain theoretically
possible while the signature is still valid.

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:M/D:H/Y:M (2.3)

Recommendation
Incorporate replay protection by requiring each signature to include a nonce and keeping track of
previously used nonces in a contract-level mapping. Once a signature with a particular nonce has been
consumed, subsequent attempts to use the same signature and nonce should revert. This ensures each
off-chain signature can only be used once, preventing replay attacks even within the payload’s expiration
window.

Remediation

SOLVED: The Guru team fixed this finding in commit 768cf9cd by adding a nonce to prevent replay
attacks.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:M/D:H/Y:M
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:M/D:H/Y:M
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:M/D:H/Y:M
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:M/I:M/D:H/Y:M

Remediation Hash
https://gitlab.com/guru-fund/halborn-audit/-/commit/768cf9cd6d12462058d1fe70ea12357fe8dec65a

7. 9 M I S S I N G I N P U T VA L I DAT I O N

// LOW

Description
During the security assessment, it was identified that some functions in the smart contracts lack proper
input validation, allowing critical parameters to be set to undesired or unrealistic values. This can lead to
potential vulnerabilities, unexpected behavior, or erroneous states within the contract. Examples include:

FundFactory.sol:

vault = _vault; and guruBurner = _guruBurner; (in the constructor) have no check against
address(0).

setVault(), setGuruBurner(), and other setter functions similarly do not validate address inputs.
Numeric parameters such as the ones in setProtocolDepositFee() or setProtocolSwapFee()

have no upper/lower bound checks.

GuruFund.sol:

_updateAssets() assigns assets[_updates[i].index] = _updates[i].asset; without verifying
whether asset is the zero address.

The transferShares() function is not ensuring that the to address is not equal to msg.sender.
updateMinUserDepositValue() and updateMinDepositCooldown() have no upper/lower bound

checks.

This list is not exhaustive. It is recommended to conduct a comprehensive review of the codebase to
identify and assess other functions that may require additional input validation. Ensuring appropriate
checks are in place for critical parameters will enhance the overall reliability, security, and predictability
of the contracts.

BVSS

AO:A/AC:L/AX:L/C:N/I:L/A:L/D:L/Y:L/R:P/S:U (2.2)

Recommendation
To mitigate these issues, implement input validation in all constructor functions and other critical
functions to ensure that inputs meet expected criteria. This can prevent unexpected behaviors and
potential vulnerabilities.

Remediation

RISK ACCEPTED: The Guru team accepted the risk of this finding.

https://gitlab.com/guru-fund/halborn-audit/-/commit/768cf9cd6d12462058d1fe70ea12357fe8dec65a
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:L/A:L/D:L/Y:L/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:L/A:L/D:L/Y:L/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:L/A:L/D:L/Y:L/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:L/A:L/D:L/Y:L/R:P/S:U

7.1 0 C E N T R A L I Z AT I O N R I S KS

// LOW

Description
The protocol relies heavily on centralized components that could pose risks to users and the system’s
integrity. Specifically:

Owner Role: A single owner account retains broad privileges (e.g., pausing the protocol, updating
critical parameters), allowing centralized control over the DeFi platform’s core functionalities. If
compromised or misused, this role could disrupt or manipulate core operations (e.g., fee configurations,
deposit/withdrawal mechanics).

Off-Chain Signer: Key operations require an off-chain EIP-712 signature, which the Guru Fund
contracts verify. This architecture places substantial trust in the security of the private key controlling
the off-chain signer. If that private key is compromised, attackers could craft valid signatures to execute
unauthorized fund actions, affecting deposits, withdrawals, and fund management.

Although these design choices can offer operational efficiency and rapid updates, they also create a
central point of failure and vest considerable power in a single entity or small group. The development
team acknowledges that private key management for the off-chain signer is outside the scope of the
Solidity audit; however, this remains a security concern.

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:H/I:H/D:M/Y:N (2.1)

Recommendation
It is recommended the following:

1. Adopt Multisig or DAO-Based Governance: Transition the owner role to a multi-signature wallet or a
DAO/governance model to distribute control and reduce reliance on a single party.
2. Enhance Off-Chain Signer Security:

Use an institutional-grade Hardware Security Module (HSM) or a threshold-signature scheme (e.g.,
MPC) for the off-chain signer key.

Implement robust key management policies and regular key rotations to reduce the risk of
permanent compromise.

3. On-Chain Validation of Critical Operations: Where feasible, shift critical or sensitive logic on-chain to
reduce reliance on off-chain logic.
4. Emergency Procedures and Transparency:

Provide transparent documentation or a public dashboard to inform users of any centralized
intervention (e.g., pausing the protocol).

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:H/I:H/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:H/I:H/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:H/I:H/D:M/Y:N
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:H/I:H/D:M/Y:N

Plan a contingency strategy (e.g., timelock for changes or a publicly broadcasted freeze period) to
mitigate abrupt or unannounced governance decisions.

By distributing control and securing off-chain components, the protocol can significantly lower its
centralization risk and foster greater trust among participants.

Remediation

RISK ACCEPTED: The B14G team accepted the risk of this finding.

7.1 1 S I N G L E- ST E P OWN E RS H I P T R A N S F E R P RO C ES S

// INFORMATIONAL

Description
It was identified that the GuruFund contract inherits from OpenZeppelin's OwnableUpgradeable library
and FundFactory indirectly inherits from Ownable through EIP712Helper. Ownership of the contracts
that are inherited from the OwnableUpgradeable and Ownable modules can be lost, as the ownership is
transferred in a single-step process.

The address that the ownership is changed to should be verified to be active or willing to act as the
owner. Ownable2Step and Ownable2StepUpgradeable are safer than Ownable and OwnableUpgradeable
for smart contracts because the owner cannot accidentally transfer smart contract ownership to a
mistyped address. Rather than directly transferring to the new owner, the transfer only completes when
the new owner accepts ownership.

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:L/I:N/D:N/Y:N (1.7)

Recommendation
To mitigate the risks associated with single-step ownership transitions and enhance contract security, it
is recommended to adopt a two-step ownership transition mechanism, such as OpenZeppelin's
Ownable2Step and Ownable2StepUpgradeable. This approach introduces an additional step in the
ownership transfer process, requiring the new owner to accept ownership before the transition is
finalized. The process typically involves the current owner calling a function to nominate a new owner,
and the nominee then calling another function to accept ownership.

Implementing Ownable2Step and Ownable2StepUpgradeable provides several benefits:
1. Reduces Risk of Accidental Loss of Ownership: By requiring explicit acceptance of ownership, the risk
of accidentally transferring ownership to an incorrect or zero address is significantly reduced.
2. Enhanced Security: It adds another layer of security by ensuring that the new owner is prepared and
willing to take over the responsibilities associated with contract ownership.
3. Flexibility in Ownership Transitions: Allows for a smoother transition of ownership, as the nominee has
the opportunity to prepare for the acceptance of their new role.

By adopting Ownable2Step and Ownable2StepUpgradeable, contract administrators can ensure a more
secure and controlled process for transferring ownership, safeguarding against the risks associated with
accidental or unauthorized ownership changes.

Remediation

ACKNOWLEDGED: The Guru team acknowledged this finding.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:M/R:N/S:U/C:N/A:L/I:N/D:N/Y:N

7.1 2 OWN E R CA N R E N O U N C E OWN E RS H I P

// INFORMATIONAL

Description
It was identified that the GuruFund contract inherits from OpenZeppelin's OwnableUpgradeable library
and FundFactory indirectly inherits from Ownable through EIP712Helper. In the Ownable and
OwnableUpgradeable contracts, the renounceOwnership() function is used to renounce the Owner
permission. Renouncing ownership before transferring would result in the contract having no owner,
eliminating the ability to call privileged functions.

/**/**
 * @dev Leaves the contract without owner. It will not be possible to call * @dev Leaves the contract without owner. It will not be possible to call
 * `onlyOwner` functions. Can only be called by the current owner. * `onlyOwner` functions. Can only be called by the current owner.
 * *
 * NOTE: Renouncing ownership will leave the contract without an owner, * NOTE: Renouncing ownership will leave the contract without an owner,
 * thereby disabling any functionality that is only available to the owner. * thereby disabling any functionality that is only available to the owner.
 */ */
functionfunction renounceOwnershiprenounceOwnership(()) publicpublic virtual onlyOwner virtual onlyOwner {{
 _transferOwnership_transferOwnership((addressaddress((00))));;
}}

Furthermore, the contract owner or single user with a role is not prevented from renouncing the
role/ownership while the contract is paused, which would cause any user assets stored in the protocol, to
be locked indefinitely.

BVSS

AO:A/AC:L/AX:L/C:N/I:N/A:L/D:N/Y:N/R:P/S:U (1.3)

Recommendation
It is recommended that the Owner cannot call renounceOwnership() without first transferring
ownership to another address. In addition, if a multi-signature wallet is used, the call to the
renounceOwnership() function should be confirmed for two or more users.

Remediation

PARTIALLY SOLVED: The Guru team partially fixed this finding in commit 768cf9cd by using overriding the
renounceOwnership() function in GuruFund. However, this was not modified in FundFactory
(EIP712Helper).

Remediation Hash
https://gitlab.com/guru-fund/halborn-audit/-/commit/768cf9cd6d12462058d1fe70ea12357fe8dec65a

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:L/D:N/Y:N/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:L/D:N/Y:N/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:L/D:N/Y:N/R:P/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:L/D:N/Y:N/R:P/S:U
https://gitlab.com/guru-fund/halborn-audit/-/commit/768cf9cd6d12462058d1fe70ea12357fe8dec65a

7.1 3 U S E O F A N U N L I C E N S E D S M A RT C O N T R AC T

// INFORMATIONAL

Description
The EIP712Helper smart contract in scope is marked as unlicensed, as indicated by the SPDX license
identifier at the top of the file:

Using unlicensed contracts can lead to legal uncertainties and potential conflicts regarding the usage,
modification and distribution rights of the code. This may deter other developers from using or
contributing to the project and could potentially lead to legal issues in the future.

Score

AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation
It is strongly recommended to apply the appropriate open-source license to the unlicensed smart
contract.

Remediation

SOLVED: The Guru team fixed this finding in commit 768cf9cd by correcting the license discrepancies.

Remediation Hash
https://gitlab.com/guru-fund/halborn-audit/-/commit/768cf9cd6d12462058d1fe70ea12357fe8dec65a

// SPDX-License-Identifier: UNLICENSED// SPDX-License-Identifier: UNLICENSED11

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://gitlab.com/guru-fund/halborn-audit/-/commit/768cf9cd6d12462058d1fe70ea12357fe8dec65a

7.1 4 I N C O M P L E T E N ATS P EC D O C U M E N TAT I O N

// INFORMATIONAL

Description
Although much of the code under review maintains a generally consistent NatSpec standard, there are
notable gaps and inconsistencies in the documentation. Specifically:

Several public functions across the codebase (e.g., all functions in FundFactory except
createFund()) are missing NatSpec comments.

Certain files, Error.sol and IWETH.sol, contain no NatSpec documentation at all.
Files like SwapHelper.sol, TransferHelper.sol, and FundFactory.sol lack a standardized title and

author format compared to GuruFund.sol.

These shortcomings in documentation can hinder a clear understanding of the contract logic, making it
more difficult for external developers, users, and auditors to grasp the intended behavior, usage
constraints, and potential edge cases.

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation
Adopt a unified NatSpec documentation approach throughout the entire codebase. Specifically:
1. Function-Level Annotations: Provide full NatSpec annotations (@notice, @dev, @param, @return, etc.)
for every function, detailing its purpose, parameter usage, and return data.
2. File-Level Titles and Author Tags: In all helper and core contracts, add a standardized title and author
header for improved consistency and clarity.
3. Comprehensive Coverage: Incorporate NatSpec documentation for structs, errors, and interfaces (e.g.,
Error.sol, IWETH.sol) to ensure all code units are fully described.

By normalizing these practices, the overall clarity, maintainability, and auditability of the codebase is
significantly enhanced.

Remediation

ACKNOWLEDGED: The Guru team acknowledged this finding.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C

7.1 5 U N LO C K E D P R AG M A C O M P I L E R

// INFORMATIONAL

Description
All files in scope currently use a fixed pragma version =0.8.27. However, the TransferHelper uses
^0.8.27, which means that the code can be compiled by any compiler version that is greater than or
equal to 0.8.27 and less than 0.9.0. It is recommended that contracts should be deployed with the
same compiler version and flags used during development and testing. Locking the pragma helps to
ensure that contracts do not accidentally get deployed using another pragma. For example, an outdated
pragma version might introduce bugs that affect the contract system negatively.

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation
Lock the pragma version of all files to the same version used during development and testing.

Remediation

SOLVED: The Guru team fixed this finding in commit 768cf9cd by using a fixed version of Solidity in all
contracts (0.8.27).

Remediation Hash
https://gitlab.com/guru-fund/halborn-audit/-/commit/768cf9cd6d12462058d1fe70ea12357fe8dec65a

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://gitlab.com/guru-fund/halborn-audit/-/commit/768cf9cd6d12462058d1fe70ea12357fe8dec65a

7.1 6 M AG I C N U M B E RS I N U S E

// INFORMATIONAL

Description
In programming, magic numbers refers to the use of unexplained numerical or string values directly in
code, without any clear indication of their purpose or origin. The use of magic numbers can lead to
confusion and make your code more difficult to understand, maintain, and update.

To improve the readability and maintainability of your smart contracts, it is recommended to avoid using
magic numbers and instead use named constants or variables to represent these values. By doing so, you
provide clear context for the values, making it easier for developers to understand their purpose and
significance.

Three examples of magic numbers were found in GuruFund.sol:

fees fees <=<= ((msgmsg..value value ** fundFactory fundFactory..protocolDepositFeeprotocolDepositFee(()))) // 100100_000 _000 &&&&
......
gracePeriodEnd gracePeriodEnd == block block..timestamp timestamp ++ 180180 days days;;
......
returnreturn 66;;

In FundFactory.sol, the use of magic numbers without scientific notation was also found in:

uint64uint64 publicpublic minimumGuruInitialDepositValue minimumGuruInitialDepositValue == 10001000_000000_000000;;

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation
To improve code maintainability, readability, and reduce the risk of potential errors, it is recommended to
replace magic numbers with well-defined constants. By using constants, developers can provide clear
and descriptive names for specific values, making the code easier to understand and maintain.
Additionally, updating the values becomes more straightforward, as changes can be made in a single
location, reducing the risk of errors and inconsistencies. For large numbers, consider using scientific
notation (e.g., 1e4).

Remediation

ACKNOWLEDGED: The Guru team acknowledged this finding.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C

7.1 7 U N U S E D C U STO M E R RO RS A N D I M P O RTS

// INFORMATIONAL

Description
During the security assessment of the smart contracts, some instances of unused custom errors and
unused imports were found. Unused errors and imports can clutter the codebase, reducing readability
and potentially leading to confusion during development or auditing. Additionally, unnecessary imports
can slightly increase the compiled contract's bytecode size, potentially affecting deployment and
execution costs.

Unused Errors

In FundFactory.sol:

error error InsufficientFirstDepositInsufficientFirstDeposit((uint256uint256 received received,, uint256uint256 required required));;

In GuruFund.sol:

error error DepositMustIncreaseTVLDepositMustIncreaseTVL(());;

Unused Imports

In FundFactory.sol:

importimport '@openzeppelin/contracts/token/ERC20/ERC20.sol''@openzeppelin/contracts/token/ERC20/ERC20.sol';;
importimport '@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol''@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol';;
importimport '@openzeppelin/contracts/proxy/utils/UUPSUpgradeable.sol''@openzeppelin/contracts/proxy/utils/UUPSUpgradeable.sol';;
importimport '@openzeppelin/contracts/utils/Context.sol''@openzeppelin/contracts/utils/Context.sol';;

In GuruFund.sol:

importimport '@openzeppelin/contracts/utils/Context.sol''@openzeppelin/contracts/utils/Context.sol';;
......
importimport './interfaces/IWETH.sol''./interfaces/IWETH.sol';;
importimport './helpers/EIP712Helper.sol''./helpers/EIP712Helper.sol';;

In EIP712Helper.sol:

importimport '@openzeppelin/contracts/token/ERC20/ERC20.sol''@openzeppelin/contracts/token/ERC20/ERC20.sol';;

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation
For better clarity, consider using or removing all unused code. Keeping the code clean and relevant helps
in maintaining a secure and efficient codebase.

Remediation

PARTIALLY SOLVED: The Guru team partially fixed this finding in commit 84d7e5f5 by reintroducing and
using the custom error DepositMustIncreaseTVL. However, the InsufficientFirstDeposit is still
unused and the unused imports are still present.

Remediation Hash
https://gitlab.com/guru-fund/halborn-audit/-/commit/84d7e5f599af8bde9bd6902a0ca23a0a24e43cb8

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://gitlab.com/guru-fund/halborn-audit/-/commit/84d7e5f599af8bde9bd6902a0ca23a0a24e43cb8

7.1 8 ST Y L E G U I D E O P T I M I Z AT I O N S

// INFORMATIONAL

Description
The project codebase contains several stylistic inconsistencies and deviations from Solidity best
practices, which, while not directly impacting functionality, reduce code readability, maintainability, and
adherence to standard conventions. Addressing these inconsistencies can enhance the clarity and
professionalism of the code.

Examples:

Use of public Where external Could Be Used: Certain public functions could be declared as
external to potentially save gas and adhere to best practices. Example in FundFactory.sol:

functionfunction setProtocolSwapFeesetProtocolSwapFee((uint16uint16 _newProtocolSwapFee _newProtocolSwapFee)) publicpublic onlyOwner onlyOwner {{

Use of Whole File Imports Instead of Named Imports: Full file imports are used across the codebase,
which may include unnecessary code and reduce clarity. Example from FundFactory.sol:

importimport '@openzeppelin/contracts/token/ERC20/ERC20.sol''@openzeppelin/contracts/token/ERC20/ERC20.sol';;

Use of single quotes: In Solidity, when working with strings, it is recommended to use double quotes
rather than single quotes. Example from FundFactory.sol:

importimport '@openzeppelin/contracts/token/ERC20/ERC20.sol''@openzeppelin/contracts/token/ERC20/ERC20.sol';;
......
OwnableOwnable((msgmsg..sendersender)) EIP712HelperEIP712Helper(('GURU.FUND''GURU.FUND',, 'v0.1.0''v0.1.0',, _offchainSigner _offchainSigner)) {{

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation
It is recommended the following:

Reassess Function Visibility:

Change public functions to external where appropriate for gas efficiency.

Use Named Imports:

Change whole path imports to named imports to improve readability.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C

Strings should use double quotes rather than single quotes.

Remediation

PARTIALLY SOLVED: The Guru team partially fixed this finding in commit 84d7e5f5 by double quotes
rather than single quotes. However, multiple functions are still using public instead of external and no
named imports are used.

Remediation Hash
https://gitlab.com/guru-fund/halborn-audit/-/commit/84d7e5f599af8bde9bd6902a0ca23a0a24e43cb8

7.1 9 C O N S I D E R U S I N G N A M E D M A P P I N G S

// INFORMATIONAL

Description
The project accepts using a Solidity compiler version greater than 0.8.18, which supports named
mappings. Using named mappings can improve the readability and maintainability of the code by making
the purpose of each mapping clearer. This practice helps developers and auditors understand the
mappings' intent more easily.

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation
Consider refactoring the mappings to use named arguments, which will enhance code readability and
make the purpose of each mapping more explicit.

For example, on GuruFund.sol, instead of declaring:

mappingmapping((addressaddress =>=> uint256uint256)) publicpublic investedCapital investedCapital;;

It could be declared as:

mappingmapping((addressaddress user user =>=> uint256uint256 totalInvested totalInvested)) publicpublic investedCapital investedCapital;;

Remediation

ACKNOWLEDGED: The Guru team acknowledged this finding.

https://gitlab.com/guru-fund/halborn-audit/-/commit/84d7e5f599af8bde9bd6902a0ca23a0a24e43cb8
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C

7. 2 0 CAC H E A R R AY L E N GT H O U TS I D E O F LO O P

// INFORMATIONAL

Description
When the length of an array is not cached outside of a loop, the Solidity compiler reads the length of the
array during each iteration. For storage arrays, this results in an extra sload operation (100 additional
gas for each iteration except the first). For memory arrays, this results in an extra mload operation (3
additional gas for each iteration except the first).

Detecting loops that use the length member of a storage array in their loop condition without modifying
it can reveal opportunities for optimization. See the following example in SwapHelper.sol:

functionfunction _executeSwaps_executeSwaps((SwapSwap[[]] memorymemory _swaps _swaps)) internalinternal {{
 forfor ((uint8uint8 i i == 00;; i i << _swaps _swaps..lengthlength;; i i++++)) {{
 _executeSingleSwap_executeSingleSwap((_swaps_swaps[[ii]]));;
 }}
}}

Another instance in GuruFund.sol was found:

functionfunction _updateAssets_updateAssets((AssetIndexAssetIndex[[]] memorymemory _updates _updates)) internalinternal {{
 forfor ((uint8uint8 i i == 00;; i i << _updates _updates..lengthlength;; i i++++)) {{
 assets assets[[_updates_updates[[ii]]..indexindex]] == _updates _updates[[ii]]..assetasset;;
 }}

Score

AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation
Cache the length of the (storage and memory) arrays in a local variable outside the loop to optimize gas
usage. This reduces the number of read operations required during each iteration of the loop. See the
example fix below:

functionfunction _executeSwaps_executeSwaps((SwapSwap[[]] memorymemory _swaps _swaps)) internalinternal {{
 uint256uint256 _swapsLength _swapsLength == _swaps _swaps..lengthlength;;
 forfor ((uint8uint8 i i == 00;; i i << _swapsLength _swapsLength;; i i++++)) {{
 _executeSingleSwap_executeSingleSwap((_swaps_swaps[[ii]]));;
 }}
}}

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U

Remediation

ACKNOWLEDGED: The Guru team acknowledged this finding.

7. 2 1 P OT E N T I A L LY U N SA F E O R U N N EC ES SA RY CAST I N G S

// INFORMATIONAL

Description
There are instances of both potentially unsafe and redundant type castings in the codebase. One
instance of potential unsafe casting is:

int256int256((_initialDeposit_initialDeposit..valuevalue)),,

This casting from uint256 to int256 could result in unexpected negative values if
_initialDeposit.value is larger than type(int256).max.

One instance of redundant casting is the following:

investedCapitalinvestedCapital[[ownerowner(())]] == uint256uint256((_initialDeposit_initialDeposit..valuevalue));;

Notice _initialDeposit.value is already of type uint256.

Score

AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation
Consider using OpenZeppelin's SafeCast library to safely downcast integers. Alternatively, consider
adding the following check:

requirerequire((rewardAmount rewardAmount <=<= typetype((uint192uint192))..maxmax,, "Amount exceeds uint192""Amount exceeds uint192"));;
returnreturn uint192uint192((rewardAmountrewardAmount));;

For unnecessary casting, it would be recommended to remove it for better code clarity and gas
optimization.

Remediation

ACKNOWLEDGED: The Guru team acknowledged this finding.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U

8 . AU TO M AT E D T EST I N G

STATIC ANALYSIS REPORT

D e s c r i p t i o n

Halborn used automated testing techniques to enhance the coverage of certain areas of the smart
contracts in scope. Among the tools used was Slither, a Solidity static analysis framework. After Halborn
verified the smart contracts in the repository and was able to compile them correctly into their abis and
binary format, Slither was run against the contracts. This tool can statically verify mathematical
relationships between Solidity variables to detect invalid or inconsistent usage of the contracts' APIs
across the entire code-base.
All issues identified by Slither were proved to be false positives or have been added to the issue list in
this report.

O u t p u t

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

