
Report for Guru

Date: February 26, 2025 Version: 1.0
Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

Chapter 1 Introduction 1
1.1 About Target Contracts . 1
1.2 Disclaimer . 1
1.3 Procedure of Auditing . 1

1.3.1 Software Security . 2
1.3.2 DeFi Security . 2
1.3.3 NFT Security . 2
1.3.4 Additional Recommendation . 2

1.4 Security Model . 3

Chapter 2 Findings 4
2.1 DeFi Security . 4

2.1.1 Lack of check in function _executeSingleSwap() 4
2.1.2 Potential signature replay risk in function withdraw() 5
2.1.3 Potential manipulation of cooldown period by fund manager 6
2.1.4 Inconsistent capital adjustment during share transfer 7

2.2 Additional Recommendation . 9
2.2.1 Lack of checks in function setMultisig() . 9
2.2.2 Lack of check for _deposit.tvlDelta in function depositAsset() 9

2.3 Notes . 11
2.3.1 Potential centralization risk . 11
2.3.2 Off-Chain validation of fund name and symbol 11
2.3.3 Fund manager margin withdrawal allowed by protocol 11

Report Manifest

Item Description
Client Guru
Target Guru

Version History

Version Date Description
1.0 February 26, 2025 First release

Signature

About BlockSec BlockSec focuses on the security of the blockchain ecosystem and col-
laborates with leading DeFi projects to secure their products. BlockSec is founded by top-
notch security researchers and experienced experts from both academia and industry. They
have published multiple blockchain security papers in prestigious conferences, reported sev-
eral zero-day attacks of DeFi applications, and successfully protected digital assets that are
worth more than 14 million dollars by blocking multiple attacks. They can be reached at Email,
Twitter and Medium.

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

The audited file is provided as a ZIP archive.
The auditing process is iterative. Specifically, we would audit the files that fix the discov-

ered issues. If there are new issues, we will continue this process. The MD5 hashes of the
audited files during the audit are shown in the following table. Our audit report is responsible
for the code in the initial version (Version 1), as well as new code (in the following versions)
to fix issues in the audit report.

Project Version MD5 Hash

Guru Version 1 26f6cda68fe4285b45cb162e731971b1
Version 2 970f950c003bc33808b792021d848b90

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation.
It does not consider, and should not be interpreted as considering or having any bearing on,
the potential economics of a token, token sale or any other product, service or other asset.
Any entity should not rely on this report in any way, including for the purpose of making any
decisions to buy or sell any token, product, service or other asset.

This audit report is not an endorsement of any particular project or team, and the report
does not guarantee the security of any particular project. This audit does not give any war-
ranties on discovering all security issues of the smart contracts, i.e., the evaluation result does
not guarantee the nonexistence of any further findings of security issues. As one audit can-
not be considered comprehensive, we always recommend proceeding with independent audits
and a public bug bounty program to ensure the security of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explic-
itly specified, the security of the language itself (e.g., the solidity language), the underlying
compiling toolchain and the computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.
- Vulnerability Detection We first scan smart contracts with automatic code analyzers,
and then manually verify (reject or confirm) the issues reported by them.

- Semantic Analysis We study the business logic of smart contracts and conduct further
investigation on the possible vulnerabilities using an automatic fuzzing tool (developed by
our research team). We alsomanually analyze possible attack scenarioswith independent
auditors to cross-check the result.

- Recommendation We provide some useful advice to developers from the perspective
of good programming practice, including gas optimization, code style, and etc.
We show the main concrete checkpoints in the following.

1.3.1 Software Security

∗ Reentrancy
∗ DoS
∗ Access control
∗ Data handling and data flow
∗ Exception handling
∗ Untrusted external call and control flow
∗ Initialization consistency
∗ Events operation
∗ Error-prone randomness
∗ Improper use of the proxy system

1.3.2 DeFi Security

∗ Semantic consistency
∗ Functionality consistency
∗ Permission management
∗ Business logic
∗ Token operation
∗ Emergency mechanism
∗ Oracle security
∗ Whitelist and blacklist
∗ Economic impact
∗ Batch transfer

1.3.3 NFT Security

∗ Duplicated item
∗ Verification of the token receiver
∗ Off-chain metadata security

1.3.4 Additional Recommendation

∗ Gas optimization
∗ Code quality and style

2

�

Note The previous checkpoints are the main ones. We may use more checkpoints during the
auditing process according to the functionality of the project.

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by
both industry and academy, including OWASP Risk Rating Methodology 1 and CommonWeak-
ness Enumeration 2. The overall severity of the risk is determined by likelihood and impact.
Specifically, likelihood is used to estimate how likely a particular vulnerability can be uncov-
ered and exploited by an attacker, while impact is used to measure the consequences of a
successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low
respectively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

Im
pa
ct

High High Medium

Low Medium Low

High Low
Likelihood

Accordingly, the severity measured in this report are classified into three categories: High,
Medium, Low. For the sake of completeness, Undetermined is also used to cover circum-
stances when the risk cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following four cate-
gories:

- Undetermined No response yet.
- Acknowledged The item has been received by the client, but not confirmed yet.
- Confirmed The item has been recognized by the client, but not fixed yet.
- Fixed The item has been confirmed and fixed by the client.

1https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
2https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Chapter 2 Findings

In total, we found four potential security issues. Besides, we have two recommendations
and three notes.

- High Risk: 3
- Low Risk: 1
- Recommendation: 2
- Note: 3

ID Severity Description Category Status

1 High Lack of check in function
_executeSingleSwap()

DeFi Security Fixed

2 High Potential signature replay risk in function
withdraw()

DeFi Security Fixed

3 High Potential manipulation of cooldown pe-
riod by fund manager DeFi Security Fixed

4 Low Inconsistent capital adjustment during
share transfer DeFi Security Fixed

5 - Lack of checks in function setMultisig() Recommendation Fixed

6 - Lack of check for _deposit.tvlDelta in
function depositAsset()

Recommendation Fixed

7 - Potential centralization risk Note -

8 - Off-Chain validation of fund name and
symbol Note -

9 - Fundmanager margin withdrawal allowed
by protocol Note -

The details are provided in the following sections.

2.1 DeFi Security

2.1.1 Lack of check in function _executeSingleSwap()

Severity High
Status Fixed in Version 2

Introduced by Version 1

Description In the contract SwapHelper, the function _executeSingleSwap() performs a low-
level call to a router for executing a token swap. However, the function does not verify whether
the call succeeds or not.

As a result, if the swap operation fails, the function will continue execution without revert-
ing. This means the protocol will still charge the swap fee, even though no tokens are actually
swapped.
49 function _executeSingleSwap(Swap memory _swap) internal {
50 uint256 tokenInBalanceBefore = _swap.tokenIn.balanceOf(address(this));
51 uint256 tokenOutBalanceBefore = _swap.tokenOut.balanceOf(address(this));

52
53
54 // Approve the router to spend the tokenIn
55 _swap.tokenIn.forceApprove(address(_swap.router), _swap.amountToSend);
56
57
58 // Forward the call to the router and ignore the return data (it gets optimized out)
59 (bool success,) = _swap.router.call(_swap.callData);
60 success;
61
62
63 ERC20(weth).safeTransfer(feeCollector, _swap.swapFee);
64
65
66 uint256 tokenInBalanceAfter = _swap.tokenIn.balanceOf(address(this));
67 uint256 tokenOutBalanceAfter = _swap.tokenOut.balanceOf(address(this));
68
69
70 emit SwapExecuted(
71 msg.sender,
72 address(_swap.tokenIn),
73 address(_swap.tokenOut),
74 tokenInBalanceBefore - tokenInBalanceAfter,
75 tokenOutBalanceAfter - tokenOutBalanceBefore,
76 _swap.router
77);
78 }

Listing 2.1: SwapHelper.sol

Impact If the swap fails, the function does not revert, causing the protocol to collect swap
fees despite the transaction failing.
Suggestion Add a check to ensure that the transaction reverts if the swap operation fails.

2.1.2 Potential signature replay risk in function withdraw()

Severity High
Status Fixed in Version 2

Introduced by Version 1

Description In the GuruFund contract, function withdraw() receives a signature for autho-
rization. Anyone can call this function with a valid signature, including both regular users and
the fund manager. While repeated withdrawals by regular users do not pose a risk, the fund
manager is required to maintain a margin deposit as a security measure enforced by the proto-
col.

However, because the same signed payload can be reusedmultiple times, the fund manager
can repeatedly invoke function withdraw() before the signature expires. This effectively by-
passes off-chain validation, allowing the fund manager to withdraw their entire margin deposit,
which should not be allowed. This could compromise the protocol’s security by removing the
required financial commitment from the fund manager.

5

466 function withdraw(
467 SignedPayload calldata _signedWithdrawPayload
468) external nonReentrant verifyingSignature(_signedWithdrawPayload) {
469 FundAction.Withdraw memory _userWithdrawal = abi.decode(
470 _signedWithdrawPayload.data,
471 (FundAction.Withdraw)
472);
473
474
475 // 1. Burn tokens
476 _burn(msg.sender, _userWithdrawal.burnAmount);
477
478
479 // 2. Update invested capital
480 unchecked {
481 investedCapital[msg.sender] -= _userWithdrawal
482 .amountsValue
483 .investedCapital;
484 }
485
486
487 // 3. Execute swaps
488 _executeSwaps(_userWithdrawal.swaps);
489
490
491 // 4. Handle ETH transfers and fees
492 _executeWithdrawalTransfers(_userWithdrawal.amountsWei);
493
494
495 emit Withdrawn(
496 msg.sender,
497 _userWithdrawal.burnAmount,
498 _userWithdrawal.amountsWei,
499 _userWithdrawal.amountsValue,
500 _userWithdrawal.tvlDelta
501);
502 }

Listing 2.2: GuruFund.sol

Impact The lack of replay protection in function withdraw() enables a fund manager to with-
draw their entire margin deposit by reusing the same signature, bypassing protocol-imposed
restrictions and potentially undermining trust in the system.
Suggestion Implement a nonce mechanism to ensure each signature can only be used once.

2.1.3 Potential manipulation of cooldown period by fund manager

Severity High
Status Fixed in Version 2

Introduced by Version 1

6

Description In the GuruFund contract, the function updateMinDepositCooldown() allows the
fund manager (i.e., contract owner) to modify minUserDepositCooldown at any time without re-
striction. This variable sets the mandatory waiting period for users before they can withdraw
their funds. The timing of this cooldown is crucial because the protocol calculates a user’s
profit and loss (PnL) at the time of withdrawal.

The incentive structure for the fund manager is problematic. When users withdraw funds
at a profit, the fund manager earns a portion of the gains as fees. Conversely, no fees are col-
lected from withdrawals made at a loss. This discrepancy creates a potential for abuse: the
fund manager could extend the cooldown period strategically when users are likely to incur
losses, thus preventing them from withdrawing their funds. By delaying withdrawals until mar-
ket conditions improve and users’ balances turn profitable, the fund manager can then shorten
the cooldown period to allow withdrawals and collect fees. Such manipulative tactics pro-
vide the fund manager with an undue advantage, compromising the fairness and integrity of
the contract from the users’ perspective.
564 function updateMinDepositCooldown(
565 uint256 _newMinCooldown
566) external onlyOpen onlyOwner {
567 minUserDepositCooldown = _newMinCooldown;
568 emit MinUserDepositCooldownUpdated(_newMinCooldown);
569 }

Listing 2.3: GuruFund.sol

Impact A malicious fund manager might manipulate withdrawal restrictions, delaying exits
during unfavorable market conditions to prevent losses, and hastening them when profitable,
allowing fee extraction. This selective adjustment leads to unethical fund management and
could cause significant financial harm to users.
Suggestion Set amaximum limit on the cooldown period or require off-chain signer validation
for modifications.

2.1.4 Inconsistent capital adjustment during share transfer

Severity Low
Status Fixed in Version 2

Introduced by Version 1

Description In the GuruFund contract, when shares are transferred, the investedCapital of
the recipient and sender are not updated. However, in the withdraw() function, the users’
investedCapital is decreased when they withdraw, even though the investedCapital balance
isn’t adjusted during a transfer. This could lead to inconsistent or incorrect behavior, although
the transaction won’t revert due to the unchecked subtraction.
446 function withdraw(
447 SignedPayload calldata _signedWithdrawPayload
448) external nonReentrant verifyingSignature(_signedWithdrawPayload) {
449 FundAction.Withdraw memory _userWithdrawal = abi.decode(
450 _signedWithdrawPayload.data,

7

451 (FundAction.Withdraw)
452);
453
454
455 // 1. Burn tokens
456 _burn(msg.sender, _userWithdrawal.burnAmount);
457
458
459 // 2. Update invested capital
460 unchecked {
461 investedCapital[msg.sender] -= _userWithdrawal
462 .amountsValue
463 .investedCapital;
464 }
465
466
467 // 3. Execute swaps
468 _executeSwaps(_userWithdrawal.swaps);
469
470
471 // 4. Handle ETH transfers and fees
472 _executeWithdrawalTransfers(_userWithdrawal.amountsWei);
473
474
475 emit Withdrawn(
476 msg.sender,
477 _userWithdrawal.burnAmount,
478 _userWithdrawal.amountsWei,
479 _userWithdrawal.amountsValue,
480 _userWithdrawal.tvlDelta
481);
482 }
483
484
485 /**
486 * @notice Executes the withdrawal transfers, including fees.
487 * @param amountsWei The withdrawal amounts in wei units
488 */
489 function _executeWithdrawalTransfers(
490 WithdrawalAmounts memory amountsWei
491) internal {
492 if (amountsWei.grossPnl <= 0) {
493 _unwrapETH(amountsWei.netOutput);
494 } else {
495 unchecked {
496 _unwrapETH(
497 amountsWei.netOutput +
498 amountsWei.protocolFee +
499 amountsWei.guruFee
500);
501 }
502
503

8

504 _safeTransferETH(fundFactory.multisig(), amountsWei.protocolFee);
505 _safeTransferETH(owner(), amountsWei.guruFee);
506 }
507 _safeTransferETH(msg.sender, amountsWei.netOutput);
508 }

Listing 2.4: GuruFund.sol

Impact The variable investedCapital not properly updated during share transfer, which is
incorrect.
Suggestion Revise the logic to ensure that the investedCapital variable is correctly updated
during share transfer.

2.2 Additional Recommendation

2.2.1 Lack of checks in function setMultisig()

Status Fixed in Version 2

Introduced by Version 1

Description In the contract FundFactory, the function setMultisig() allows the owner to up-
date the multisig address. However, it lacks validation to prevent setting _newMultisig to
address(0) or the current multisig address. This could lead to an invalid or redundant mul-
tisig update.
66 function setMultisig(address _newMultisig) public onlyOwner {
67 multisig = _newMultisig;
68 emit MultisigUpdated(_newMultisig);
69 }

Listing 2.5: FundFactory.sol

Suggestion Add checks to ensure _newMultisig is neither address(0) nor the current multisig
address before updating.

2.2.2 Lack of check for _deposit.tvlDelta in function depositAsset()

Status Fixed in Version 2

Introduced by Version 1

Description The depositAsset() function is responsible for depositing an asset into the fund.
One of the parameters, _deposit.tvlDelta, is of type int256 and represents the change in
the total value locked (TVL) in the fund. However, in the current implementation, this value is
being directly cast from int256 to uint256 without verification. Since the tvlDelta can be a
negative value, casting a negative number to uint256 will result in an overflow and produce
an extremely large value. This overflow would lead to incorrect fund accounting and possibly
cause unexpected behavior, such as improper calculations of the total invested capital.

9

267 function depositAsset(
268 SignedPayload calldata _signedAssetDeposit
269) external onlyOwner nonReentrant verifyingSignature(_signedAssetDeposit) {
270 FundAction.AssetDeposit memory _deposit = abi.decode(
271 _signedAssetDeposit.data,
272 (FundAction.AssetDeposit)
273);
274
275
276 /// 1. Update asset index
277 require(
278 assets[_deposit.assetIndex] == ERC20(address(0)) ||
279 assets[_deposit.assetIndex] == _deposit.asset,
280 AssetIndexAlreadyOccupied(
281 _deposit.assetIndex,
282 assets[_deposit.assetIndex]
283)
284);
285
286
287 assets[_deposit.assetIndex] = _deposit.asset;
288
289
290 /// 2. Transfer deposit in
291 _deposit.asset.safeTransferFrom(
292 msg.sender,
293 address(this),
294 _deposit.amount
295);
296
297
298 /// 3. Mint fund tokens
299 _mint(msg.sender, _deposit.mintAmount);
300
301
302 /// 4. Update invested capital
303 investedCapital[msg.sender] += uint256(_deposit.tvlDelta);
304
305
306 emit DepositedAsset(_deposit.asset, _deposit.amount, _deposit.tvlDelta);
307 }

Listing 2.6: GuruFund.sol

Suggestion Add a check to ensure that _deposit.tvlDelta is positive before performing the
cast.

10

2.3 Notes

2.3.1 Potential centralization risk

Introduced by Version 1

Description The protocol relies on an off-chain trusted signer to sign the payload for critical
operations, ensuring parameter validation. When users perform an operation, they must pro-
vide a valid signature to call the corresponding function. Once the signature is successfully
verified, the payload is parsed into parameters and used in the execution logic. All parame-
ter validations are conducted off-chain, including price calculations, the price oracle it relies
on, and slippage control during swaps. Note that the correctness of these parameters are
not in the scope of our audit. During the audit, we assume these components are secure and
trustworthy. Additionally, the fund manager’s operations depend on their own market judg-
ment, meaning users still bear the risk of losses when depositing funds into the contract. The
whitelist of assets that the fund manager can purchase is also provided and verified off-chain
by the protocol.

2.3.2 Off-Chain validation of fund name and symbol

Introduced by Version 1

Description In the FundFactory contract, the function createFund() initializes a new fund us-
ing name and symbol as identifiers. However, the contract itself does not enforce uniqueness for
these parameters, relying instead on off-chain validation. Specifically, the _signedPayload is
signed by a trusted signer, and the function verifies the signature. The off-chain logic ensures
that the fund’s name and symbol are unique before signing. Since this validation occurs outside
the smart contract, its integrity is assumed but not within the contract’s scope.

2.3.3 Fund manager margin withdrawal allowed by protocol

Introduced by Version 1

Description To mitigate malicious actions by fund managers, the createFund() function re-
quires them to deposit a certain amount of native tokens as margin when creating a new fund.
The protocol allows fund managers to withdraw this margin, but when they do, users of the
corresponding fund are notified through the client-side interface.

11

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Software Security
	1.3.2 DeFi Security
	1.3.3 NFT Security
	1.3.4 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 DeFi Security
	2.1.1 Lack of check in function _executeSingleSwap()
	2.1.2 Potential signature replay risk in function withdraw()
	2.1.3 Potential manipulation of cooldown period by fund manager
	2.1.4 Inconsistent capital adjustment during share transfer

	2.2 Additional Recommendation
	2.2.1 Lack of checks in function setMultisig()
	2.2.2 Lack of check for _deposit.tvlDelta in function depositAsset()

	2.3 Notes
	2.3.1 Potential centralization risk
	2.3.2 Off-Chain validation of fund name and symbol
	2.3.3 Fund manager margin withdrawal allowed by protocol

